Advanced Higher Course Outline June 2016

	Calculus and Vectors	Algebra, Geometry and Proof
June	Partial fractions	Binomial theorem
(4 weeks)	Differentiation	Introduction to complex numbers
	Summer Holiday	S
Aug – Oct	Differentiation continued	Sequences and series
(7½ weeks)		Summations and Mathematical proof
	October Holiday	s
Oct – Dec	Integration	Properties of function
(8 weeks)	Rectilinear motion and optimisation	Matrices and systems of equations
	Volumes of revolution	
	Christmas Holida	/S
Jan – Feb	Differential equations	Matrices and systems of equations
(4 weeks)		continued
	Prelims	
Feb – Mar	Vectors	Complex numbers concluded
(8 weeks)		Number theory
		Indirect proof
	Easter Holidays	
Apr	Course revision	
(2 weeks)		

COURSE ASSESSMENTS

	September Test	Prelim Exam	Final Exam
Target Grade			
Mark			
Percentage			
Grade Achieved			

Advanced Higher Mathematics

The knowledge and skills required to meet each assessment standard is detailed below together with the *Added Value skills*.

Methods in Algebra and Calculus

1.1 Applying algebraic skills to partial fractions	VG	OT	NS
Express a proper rational function as a sum of partial fractions.			
Reduce an improper rational function to a polynomial and a			
proper rational function.			
Assessment mark			P/F

1.2 Applying calculus skills through techniques of	VG	OT	NS
differentiation			
Differentiate functions including polynomials, sinx, cosx, tanx,			
secx, cosecx, cotx, e^x and lnx.			
Differentiate functions using the chain rule			
Differentiate functions using the product rule			
Differentiate functions using the quotient rule			
Use above rules to differentiate functions requiring more than one			
application.			
Use logarithmic differentiation.			
Differentiate an inverse trig function.			
Use implicit differentiation to find first and second derivatives.			
Use parametric differentiation to find first and second derivatives.			
Solve practical problems involving rates of change.			
Assessment mark			P/F

1.3 Applying calculus skills thro	ough techniques of integration	VG	ОТ	NS
Integrate expressions using standa	ard results:			
$\int x^n dx = \frac{x^{n+1}}{1} + c, n^{-1} - 1$	$\hat{0} \sec^2 x dx = \tan x + c$			
$\hat{0} \sin x dx = -\cos x + c$	$\hat{0} e^x dx = e^x + c$			
$\hat{0}\cos xdx = \sin x + c$	$\hat{0} \frac{1}{x} dx = \ln x + c$			
$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + c$	$\int \frac{1}{1+x^2} dx = \tan^{-1} x + c$			
Integrate functions using a substit	ution.			
Prove standard integrals by substi	tution:			
$\oint f(ax+b)dx = \frac{1}{a}F(ax+b) + c \operatorname{wl}$	here F is the antiderivative of f ,			
and $\oint \frac{f(x)}{f(x)} dx = \ln f(x) + c$.				
Integrate rational functions by wr	iting in partial fractions.			
Integrate by parts including more	than one application.			
	Assessment mark			P/F

1.4 Applying calculus skills to solving differential equations	VG	OT	NS
Recognise differential equations and understand the terms linear ,			
order, general solution, arbitrary constant, particular solution			
and initial conditions.			
Solve first order differential equations with separable variables.			
Solve first order linear differential equations using the integrating			
factor method and find particular solutions.			
Solve second order homogenous ODEs with constant coefficients,			
finding the general solution in each of the <i>three cases</i> .			
Solve second order non-homogeneous ODEs with constant			
coefficients using the auxiliary equation and particular integral			
method.			
Assessment mark			P/F

Applications of Algebra and Calculus

1.1 Applying Algebraic skills to the binomial theorem and to complex numbers	VG	OT	NS
Calculate permutations and combinations.			
Understand the notation <i>n</i> ! ${}^{n}C_{r}$ and $\begin{array}{c} \overset{\mathfrak{A}}{\varsigma} & n & \overset{\mathfrak{O}}{\varsigma} \\ \overset{\cdot}{\varsigma} & r & \overset{\circ}{g} \end{array}$			
Generate Pascal's triangle up to $n = 7$.			
Expand brackets using the binomial theorem.			
Find specific terms in the expansion.			
Identify the real and imaginary parts of a complex number.			
Perform operations +, -, \times and \div on complex numbers and equate real and imaginary parts.			
Plot a complex number on an argand diagram.			
Know that a polynomial of degree n has n roots and that they occur in conjugate pairs			
Factorise polynomials with real coefficients.			
Assessment mark		<u> </u>	P/F

1.2 Applying algebraic skills to sequences and series	VG	OT	NS
Understand terms: infinite sequence, infinite series, nth term,			
sum to n terms, sum to infinity, common difference, arithmetic			
sequence, common ratio, geometric sequence, recurrence			
relation.			
Know how to find n th terms:			
$U_n = a + (n-1)d$ for arithmetic sequences and $U_n = ar^{n-1}$ and for			
geometric sequences.			
Use summation formulae (given):			
$S_n = \frac{1}{2}n[2a + (n-1)d]$ for arithmetic sequences and			
$S_n = \frac{a(1-r^n)}{1-r}$ $r \neq 1$ for geometric sequences.			
Know that $S_{\infty} = \frac{a}{1-r} r < 1$ for geometric sequences and expand			
$\frac{1}{1-r}$ and $\frac{1}{a+b}$ as geometric sequences.			
Find the Maclaurin expansion for simple functions and composites			
and their range of validity.			
Use the Maclaurin expansion to find a power series for a simple			
function to a stated number of terms.			
Assessment mark			P/F

1.3 Applying Algebraic skills to summations and mathematical proof		OT	NS
Understand sigma notation			
Use formulae for $\sum r$, $\sum r^2$ and $\sum r^3$ and prove related results			
Prove results by mathematical induction			
Assessment mark			P/F

1.4 Applying algebraic skills and calculus skills to properties of functions	
Use vocabulary function, domain, range, inverse function,	
critical point, local minimum/maximum, global	
minimum/maximum, continuous, discontinuous and	
asymptote.	
Determine the domain and range of a function.	
Use derivative tests for locating and identifying maxima and	
minima.	
Use derivative tests to locate points of inflexion.	
Sketch related graphs $y = kf(x)$, $y = f(x) + k$, $y = f(x+k)$, $y = f(kx)$	
and $y = f(x) $.	
Determine whether a function is even, odd or neither and use	
properties in graph sketching.	
Find vertical and non-vertical asymptotes.	
Sketch graphs of real rational functions showing zeros,	
asymptotes, critical points and symmetry.	
Assessment mark	P/F

1.5 Applying algebraic and calculus skills to problems	VG	OT	NS
Apply differentiation to rectilinear motion.			
Apply parametric equations to rectilinear motion.			
Apply differentiation to optimisation problems.			
Apply integration to the evaluation of areas and volumes of			
revolution <i>including integration w.r.t.</i> y.			
Assessment mark			P/F

Geometry Proof and Systems of Equations

1.1 Applying algebraic skills to matrices and systems of equations	VG	OT	NS
Understand terms: matrix, element, row, column, order,			
identity matrix, inverse, determinant, singular, non-singular			
and transpose.			
Add, subtract, multiply and equate matrices.			
Know properties:			
$A+B=B+A$ but $A\times B \neq B\times A$			
(AB)C=A(BC)			
A(B+C)=AB+AC			
(A')'=A			
(A+B)'=A'+B'			
(AB)'=B'A'			
$AB^{-1}=B^{-1}A^{-1}$			
Det(AB)=detAdetB			
Calculate the determinant of 2×2 and a 3×3 matrices.			
Find the inverse of a 2×2 and a 3×3 matrix, where these exist.			
Apply the inverse matrix to the solution of a system of equations.			
Use 2×2 matrices to represent geometrical transformations in the			
(x, y) plane.			
Use a matrix to organise a system of equations.			
Perform elementary row operations.			
Reduce a matrix to an upper triangular form.			
Solve a 3×3 system of equations using Gaussian Elimination on			
an augmented matrix.			
Find the solution to a system of linear equations given as $Ax=b$			
where there is a unique solution, no solution and an infinite family			
of solutions.			
Identify an ill-conditioned matrix.			
Assessment mark			P/F
1.2 Amplying alashusis and accountrie shills to use targ	VC	ОТ	NC
1.2 Applying algebraic and geometric skins to vectors	VG	01	IND .
Calculate scalar and vector products in three dimensions.			
Know that $a \times b = -b \times a$.			
Know the equation of a line in vector, parametric and symmetric			
Torms.			
Know the equation of a plane in vector, parametric and Cartesian			
Iorms.			
Find equations of lines and planes.			
Fina the angle between two lines, between two planes and			
between a line ana a plane.			
Fina the intersection of two lines, a line and a plane and two or			
three planes.			D/T
Assessment mark			P/F

1.3 Applying geometric skills to complex numbers	VG	OT	NS
Evaluate the modulus and argument of a complex number.			
Convert between polar and Cartesian form of a complex number.			
Use De Moivre's theorem to expand powers of complex numbers.			
Apply De Moivre's theorem to multiple angle formulae.			
Use De Moivre's theorem to find the nth roots of unity.			
Find the locus of a point in the complex plane.			
Assessment mark			P/F

1.4 Applying Algebraic skills to number theory	VG	OT	NS
Know the division algorithm.			
Use the Euclidian Algorithm to find the greatest common divisor			
of two positive integers.			
Express the gcd as a linear combination of two integers.			
Use the division algorithm to write integers in bases other than			
10.			
Assessment mark			P/F

1.5 Applying algebraic skills and geometric skills to methods of proof	VG	OT	NS
Recognise the need for proof in mathematics.			
Understand the terms implies (\Rightarrow) , is implied by (\Leftarrow) and			
equivalence (\Leftrightarrow) .			
Directly prove simple results.			
Disprove a conjecture by providing a counter example.			
Prove a result using the contrapositive.			
Know and use the fundamental theorem of arithmetic.			
Use proof by contradiction.			
Assessment mark			P/F